Effects of ocean acidification on growth, organic tissue and protein profile of the Mediterranean bryo zoan Myriapora truncata
نویسندگان
چکیده
The possible effects of ocean acidification on growth, organic tissue and protein profile in the bryozoan Myriapora truncata (Pallas, 1766) were studied in samples transplanted along a gradient of different pH conditions in an area of natural volcanic CO2 vents at Ischia Island (Tyrrhenian Sea, Italy). Living colonies from normal (mean pH 8.10), intermediate (pH 7.83) and low (pH 7.32) pH sites were investigated after intervals of 34, 57 and 87 d of exposure. M. truncata formed new and complete zooids at the normal site, whereas at the intermediate and low pH sites, neither partial nor complete zooids were produced. After 34 d at intermediate and low pH conditions, the organic cuticle which envelops the skeleton increased in thickness when compared to normal colonies, suggesting a protective role against dissolution of the high-Mg calcite skeleton. Significant changes in the protein profile and expression displayed by samples from intermediate and low pH conditions suggest that M. truncata makes an initial attempt to overcome the decrease in pH by up-regulating protein production but eventually, especially in the lowest pH condition, exhausts biochemical energy to maintain this rate of protein production, leading to eventual death.
منابع مشابه
Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents
There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to ...
متن کاملSeaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient
Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carb...
متن کاملBiomarker response of climate change-induced ocean acidification and hypercapnia studies on brachyurian crab Portunus pelagicus
A laboratory level microcosm analysis of the impacts of ocean acidification on the environmental stress biomarkers in Portunus pelagicus (Linneaus 1758)exposed to a series of pH regimes expected in the year 2100 (pH 7.5 and 7.0) and leakage from a sub-seabed carbon dioxide storage site (pH 6.5 - 5.5) was carried out. Levels of the antioxidant enzyme catalase, the phase II detoxificatio...
متن کاملEffect of reducing 3.2% dietary protein level on the growth performance and immunity of Nile tilapia (Oreochromis niloticus) with supplementation of multi amino acids
Reducing dietary protein content in fish feeds will reduce cost of production if growth performance can be maintained. In this study, we assessed the effects of reduced dietary protein content from 33.5% to 27.4% with ideal amino acids profile on the growth, immune parameters, intestinal microvilli length and total ammonia nitrogen discharge of tilapia. After 8 weeks of feeding, growth performa...
متن کاملEFFECTS OF ENVIRONMENTAL pH ON THE PRODUCTION OF HEMATOPOIETIC GROWTH FACTORS
Cellular and tissue activities highly depend on environmental pH. Murine lung tissue, when cultured properly in-vitro, is a potent producer of hematopoietic growth factors. We have studied the effect of pH on the production of hematopoietic growth factors and protein synthesis by the murine lung in-vitro. Various concentrations of NaHC03 were used to adjust the pH of the culture medium unde...
متن کامل